Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.416
Filter
Add more filters

Publication year range
1.
Front Immunol ; 14: 1048790, 2023.
Article in English | MEDLINE | ID: mdl-36993968

ABSTRACT

COVID-19 induces chromatin remodeling in host immune cells, and it had previously been shown that vitamin B12 downregulates some inflammatory genes via methyl-dependent epigenetic mechanisms. In this work, whole blood cultures from moderate or severe COVID-19 patients were used to assess the potential of B12 as adjuvant drug. The vitamin normalized the expression of a panel of inflammatory genes still dysregulated in the leukocytes despite glucocorticoid therapy during hospitalization. B12 also increased the flux of the sulfur amino acid pathway, that regulates the bioavailability of methyl. Accordingly, B12-induced downregulation of CCL3 strongly and negatively correlated with the hypermethylation of CpGs in its regulatory regions. Transcriptome analysis revealed that B12 attenuates the effects of COVID-19 on most inflammation-related pathways affected by the disease. As far as we are aware, this is the first study to demonstrate that pharmacological modulation of epigenetic markings in leukocytes favorably regulates central components of COVID-19 physiopathology.


Subject(s)
COVID-19 , DNA Methylation , Epigenesis, Genetic , Inflammation Mediators , Leukocytes , Vitamin B 12 , Vitamin B 12/pharmacology , Vitamin B 12/therapeutic use , COVID-19/genetics , COVID-19/immunology , DNA Methylation/drug effects , Inflammation/drug therapy , Inflammation/genetics , Inflammation/immunology , Humans , Male , Female , Middle Aged , Aged , Inflammation Mediators/metabolism , Leukocytes/drug effects , Leukocytes/metabolism , Chemokine CCL3/genetics , Transcriptome , Down-Regulation
2.
Int J Mol Sci ; 24(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36835128

ABSTRACT

Omega-3 (ω-3) polyunsaturated fatty acids, including docosahexaenoic acid (DHA), are involved in numerous biological processes and have a range of health benefits. DHA is obtained through the action of elongases (ELOVLs) and desaturases, among which Elovl2 is the key enzyme involved in its synthesis, and can be further metabolized into several mediators that regulate the resolution of inflammation. Our group has recently reported that ELOVL2 deficient mice (Elovl2-/-) not only display reduced DHA levels in several tissues, but they also have higher pro-inflammatory responses in the brain, including the activation of innate immune cells such as macrophages. However, whether impaired synthesis of DHA affects cells of adaptive immunity, i.e., T lymphocytes, is unexplored. Here we show that Elovl2-/- mice have significantly higher lymphocytes in peripheral blood and that both CD8+ and CD4+ T cell subsets produce greater amounts of pro-inflammatory cytokines in both blood and spleen compared to wild type mice, with a higher percentage of cytotoxic CD8+ T cells (CTLs) as well as IFN-γ-producing Th1 and IL-17-producing Th17 CD4+ cells. Furthermore, we also found that DHA deficiency impacts the cross-talk between dendritic cells (DC) and T cells, inasmuch as mature DCs of Elovl2-/- mice bear higher expression of activation markers (CD80, CD86 and MHC-II) and enhance the polarization of Th1 and Th17 cells. Reintroducing DHA back into the diets of Elovl2-/- mice reversed the exacerbated immune responses observed in T cells. Hence, impairment of endogenous synthesis of DHA exacerbates T cell inflammatory responses, accounting for an important role of DHA in regulating adaptive immunity and in potentially counteracting T-cell-mediated chronic inflammation or autoimmunity.


Subject(s)
Docosahexaenoic Acids , Inflammation , Animals , Mice , CD4-Positive T-Lymphocytes/metabolism , Cytokines , Docosahexaenoic Acids/metabolism , Fatty Acid Elongases , Inflammation/immunology , Inflammation/metabolism , Fatty Acids, Omega-3/metabolism , CD8-Positive T-Lymphocytes/metabolism
3.
Nature ; 609(7926): 348-353, 2022 09.
Article in English | MEDLINE | ID: mdl-35978195

ABSTRACT

The mammalian immune system uses various pattern recognition receptors to recognize invaders and host damage and transmits this information to downstream immunometabolic signalling outcomes. Laccase domain-containing 1 (LACC1) protein is an enzyme highly expressed in inflammatory macrophages and serves a central regulatory role in multiple inflammatory diseases such as inflammatory bowel diseases, arthritis and clearance of microbial infection1-4. However, the biochemical roles required for LACC1 functions remain largely undefined. Here we elucidated a shared biochemical function of LACC1 in mice and humans, converting L-citrulline to L-ornithine (L-Orn) and isocyanic acid and serving as a bridge between proinflammatory nitric oxide synthase (NOS2) and polyamine immunometabolism. We validated the genetic and mechanistic connections among NOS2, LACC1 and ornithine decarboxylase 1 (ODC1) in mouse models and bone marrow-derived macrophages infected by Salmonella enterica Typhimurium. Strikingly, LACC1 phenotypes required upstream NOS2 and downstream ODC1, and Lacc1-/- chemical complementation with its product L-Orn significantly restored wild-type activities. Our findings illuminate a previously unidentified pathway in inflammatory macrophages, explain why its deficiency may contribute to human inflammatory diseases and suggest that L-Orn could serve as a nutraceutical to ameliorate LACC1-associated immunological dysfunctions such as arthritis or inflammatory bowel disease.


Subject(s)
Inflammation , Intracellular Signaling Peptides and Proteins , Macrophages , Nitric Oxide Synthase Type II , Animals , Arthritis/immunology , Arthritis/metabolism , Citrulline/metabolism , Cyanates/metabolism , Humans , Inflammation/enzymology , Inflammation/immunology , Inflammation/metabolism , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Nitric Oxide Synthase Type II/metabolism , Ornithine/metabolism , Ornithine Decarboxylase/metabolism , Polyamines/metabolism , Salmonella typhimurium/immunology
4.
Mol Nutr Food Res ; 66(18): e2200082, 2022 09.
Article in English | MEDLINE | ID: mdl-35848367

ABSTRACT

SCOPE: To compare the effects of three high-fat diets (HFDs) based on coconut, sunflower, or extra virgin olive oils (EVOOs) on adipose tissue, metabolism, and inflammation. METHODS AND RESULTS: Mice are fed for 16 weeks on their respective HFD. HFD based on coconut oil produces significantly lower body weight than EVOO- or sunflower oil-based HFDs. Furthermore, the coconut oil HFD leads to metabolic disturbances such as reduction of circulating leptin and adiponectin concentrations, hypertriglyceridemia, hepatomegaly, and liver triglyceride accumulation. Likewise, this diet produces an increase in serum pro-inflammatory cytokines (interleukin 6 [IL-6] and tumor necrosis factor-α [TNF-α]). In white (WAT) and brown (BAT) adipose tissue, the HFD based on coconut oil does not cause significant changes in the expression of studied proteins related to thermogenesis (uncoupling protein 1 [UCP-1]), mitochondrial biogenesis, and browning (peroxisome proliferator-activated receptor-γ coactivator 1α [PGC-1α] and nuclear factor E2-related factor 2 [Nrf2]). However, the HFD based on EVOO induces upregulation of UCP-1, PGC-1α, and Nrf2 expression in BAT, increases the expression of UCP-1 and PGC-1α in inguinal WAT, and enhances the expression of PGC-1α in epididymal WAT. CONCLUSIONS: An HFD based on coconut oil could reduce circulating leptin and adiponectin concentrations, increase the liver fat content, raise serum triglycerides, and promote inflammation by increasing circulating pro-inflammatory cytokines, while an EVOO-based HFD could increase thermogenic activity.


Subject(s)
Adipose Tissue , Coconut Oil , Diet, High-Fat , Inflammation , Adiponectin/metabolism , Adipose Tissue/immunology , Adipose Tissue/metabolism , Animals , Coconut Oil/adverse effects , Diet, High-Fat/adverse effects , Female , Inflammation/immunology , Inflammation/metabolism , Interleukin-6/blood , Interleukin-6/metabolism , Leptin/blood , Leptin/metabolism , Mice , NF-E2-Related Factor 2/metabolism , Olive Oil , Peroxisome Proliferator-Activated Receptors/metabolism , Sunflower Oil/adverse effects , Triglycerides/analysis , Triglycerides/metabolism , Tumor Necrosis Factor-alpha/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
5.
Comput Math Methods Med ; 2022: 3179200, 2022.
Article in English | MEDLINE | ID: mdl-35309841

ABSTRACT

Human immunodeficiency virus (HIV) infection is characterized not only by severe immunodeficiency but also by persistent inflammation and immune activation. These characteristics persist in people living with HIV (PLHIV) receiving effective antiretroviral therapy (ART) and are associated with morbidity and mortality in nonacquired immunodeficiency syndrome (AIDS) events. ART can inhibit HIV replication and promote immune reconstitution, which is currently the most effective way to control AIDS. However, despite effective long-term ART and overall suppression of plasma HIV RNA level, PLHIV still shows chronic low-level inflammation. The exact mechanisms that trigger chronic inflammation are unknown. Activation of the inflammasome is essential for the host response to pathogens, and some recent studies have confirmed the role of the inflammasome in the pathogenesis of inflammatory diseases. The NLRP3 inflammasome has been widely studied, which is a pyrin domain-containing protein 3 belonging to the family of nucleotide-binding and oligomerization domain-like receptors (NLRs). Recent studies suggest that inflammasome-mediated pyroptosis is associated with CD4+ T cell loss in the absence of persistent infectious HIV replication. This article reviews the mechanism of the NLRP3 inflammasome and its correlation with immune reconstitution in PLHIV treated with ART.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , HIV Infections/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Computational Biology , HIV Infections/pathology , Host Microbial Interactions/drug effects , Host Microbial Interactions/immunology , Humans , Immune Reconstitution , Inflammasomes/drug effects , Inflammasomes/immunology , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Pyroptosis/drug effects , Pyroptosis/immunology
6.
Int J Mol Sci ; 23(5)2022 Mar 06.
Article in English | MEDLINE | ID: mdl-35270015

ABSTRACT

Almost two years have passed since the outbreak reported for the first time in Wuhan of coronavirus disease 2019 (COVID-19), due to severe acute respiratory syndrome (SARS)-CoV-2 coronavirus, rapidly evolved into a pandemic. This infectious disease has stressed global health care systems. The mortality rate is higher, particularly in elderly population and in patients with comorbidities such as hypertension, diabetes mellitus, cardiovascular disease, chronic lung disease, chronic renal disease, and malignancy. Among them, subjects with diabetes have a high risk of developing severe form of COVID-19 and show increased mortality. How diabetes contributes to COVID-19 severity remains unclear. It has been hypothesized that it may be correlated with the effects of hyperglycemia on systemic inflammatory responses and immune system dysfunction. Vitamin D (VD) is a modulator of immune-response. Data from literature showed that vitamin D deficiency in COVID-19 patients increases COVID-19 severity, likely because of its negative impact on immune and inflammatory responses. Therefore, the use of vitamin D might play a role in some aspects of the infection, particularly the inflammatory state and the immune system function of patients. Moreover, a piece of evidence highlighted a link among vitamin D deficiency, obesity and diabetes, all factors associated with COVID-19 severity. Given this background, we performed an overview of the systematic reviews to assess the association between vitamin D supplementation and inflammatory markers in patients with diabetes; furthermore, vitamin D's possible role in COVID-19 patients was assessed as well. Three databases, namely MEDLINE, PubMed Central and the Cochrane Library of Systematic Reviews, were reviewed to retrieve the pertinent data. The aim of this review is to provide insight into the recent advances about the molecular basis of the relationship between vitamin D, immune response, inflammation, diabetes and COVID-19.


Subject(s)
COVID-19/immunology , Diabetes Mellitus/immunology , Immune System/immunology , Inflammation/immunology , Obesity/immunology , Vitamin D/immunology , COVID-19/virology , Humans , Immune System/drug effects , Meta-Analysis as Topic , SARS-CoV-2/physiology , Systematic Reviews as Topic , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Vitamin D/administration & dosage , Vitamins/administration & dosage , Vitamins/immunology
7.
J Ethnopharmacol ; 283: 114729, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34634365

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: As a commercial Chinese patent medicine, Yanning Syrup (YN) is used to treat acute upper respiratory tract infections and acute enteritis effectively in clinical practice. However, the underlying mechanism remains unclear. AIMS OF THE STUDY: To reveal the effect of YN on gut microbiota dysbiosis, and explore the potential role of the gut microecosystem and CD4+ T cell immune homeostasis in YN-treated respiratory and intestinal diseases in lipopolysaccharide (LPS)-induced inflammatory rats. METHODS: Inflammation in rat models was induced by intraperitoneal injection of LPS (8 mg/kg). Histological changes were observed by H & E staining. Changes in gut microbiota and short-chain fatty acid (SCFA) production were analysed using 16S rRNA gene sequencing and targeted metabolomics. A Luminex cytokine microarray and enzyme-linked immunosorbent assay (ELISA) were conducted to evaluate the serum and colon cytokine profiles. The frequencies of immune cells, including Th1, Th2, Th17 and Treg cells in the mesenteric lymph nodes (MLNs), bronchoalveolar lavage fluid (BALF) and whole blood were phenotyped using flow cytometry. RESULTS: The YN-treated rats showed less colon inflammation, as evidenced by the reduction in mortality rate and histology score. Notably, YN was found to improve the immunosuppressed state induced by LPS in rats, which not only upregulated the levels of the proinflammatory cytokine IL-17A and the immunosuppressive cytokines IL-4 and IL-10 in colon tissue but also increased the levels of IL-1α, IL-5, IL-7, IL-12 (p70), GM-CSF and VEGF in serum. The numbers of Th17 cells and Treg cells in the MLNs, blood, and BALF of model rats were regulated by YN, with the restoration of the Th17/Treg balance. Additionally, the Th1/Th2 balance in MLNs and whole blood of model rats was restored after YN administration. Sequencing of 16S rRNA gene indicated that YN-treated rats exhibited greater gut microbial diversity and flora composition, specifically inhibiting some harmful bacteria such as Enterobacter and Blautia and increasing Firmicutes and Actinobacteria. Targeted metabolomics analysis demonstrated an increase of SCFA (acetic acid, butyric acid, valeric acid, and hexanoic acid) production in YN-treated rats. Most of the dominant bacterial genera regulated by YN administration were correlated with the concentrations of SCFA and inflammatory cytokines. CONCLUSIONS: These results demonstrated that YN could ameliorate LPS-induced inflammation in rats by modifying gut microbiota, increasing microbiota-derived SCFA production and regulating the balance of Th1/Th2 and Treg/Th17 cells.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Dysbiosis/drug therapy , Gastrointestinal Microbiome/drug effects , Inflammation/drug therapy , Animals , CD4-Positive T-Lymphocytes/immunology , Cytokines/immunology , Disease Models, Animal , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome/genetics , Inflammation/immunology , Lipopolysaccharides , Male , RNA, Ribosomal, 16S/genetics , Rats , Rats, Sprague-Dawley
8.
J Leukoc Biol ; 111(2): 401-413, 2022 02.
Article in English | MEDLINE | ID: mdl-34013552

ABSTRACT

Macrophages (Mϕ) are highly plastic, and can acquire a variety of functional phenotypes depending on the presence of different stimuli in their local environment. Mφ stimulated by interleukin (IL)-4 induce an alternative activation state and function as anti-inflammatory cells and promote tissue repair. However, there is overwhelming evidence that IL-4 can play a role in promoting inflammation. In asthma and allergic inflammation, IL-4 mediates proinflammatory responses that lead to tissue damage. Thus the effect of IL-4 on the outcome of the immune responses is greatly influenced by other cofactors and cytokines present in the microenvironment. R848 (resiquimod), a TLR7/8 agonist is a novel vaccine adjuvant, triggering a strong Th1-skewed response but its efficacy as a vaccine adjuvant shows variable results. It is not currently known whether the presence of IL-4 can dampen or enhance immunity in response to TLR7 agonists. In the present study, we sought to investigate the impact of IL-4-induced Mφ polarization on the outcome of R848 stimulation. The activation marker expression and production of cytokines were measured in murine spleen-derived Mφ. Protein expression levels of innate recognition molecules and transcription factors involved, including retinoic-acid inducible gene I, mitochondrial antiviral signaling protein, stimulator of interferon genes (STING), and IFN regulatory factors were evaluated in activated Mφ. These play a crucial role in the control of viral replication and optimal CD8+ T cell priming. We report that sustained priming with IL-4 alone promotes an antiviral response in Mφ, and enhances proinflammatory responses to R848 treatment. This highlights the need for better understanding of IL-4 proinflammatory functions and its potential use as a broad-acting antiviral in combination with R848 may be used in combination with other therapies to target the innate arm of immunity against emerging infections.


Subject(s)
Antiviral Agents/pharmacology , Imidazoles/pharmacology , Inflammation/immunology , Interleukin-4/metabolism , Macrophages/immunology , Membrane Glycoproteins/metabolism , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/metabolism , Animals , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Ligands , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL
9.
J Neuroimmunol ; 362: 577768, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34823120

ABSTRACT

The aim of this study was to evaluate the therapeutic effect of PEGlated nanoliposome of pistachio unsaturated oils (PEGNLPUOs) and their efficacy to attenuate inflammation in multiple sclerosis (MS). This study was a randomized, double-blind, placebo-controlled clinical trial phase I. The level of docosahexaenoic and eicosapentaenoic acid was significantly increased and the level of matrix metallopeptidase-9 was significantly decreased in MS patients treated with PEGNLPUOs. The level of cytokine showed a Th2-biased response with attenuation of inflammation after treatment with PEGNLPUOs. The number of relapses, disability scores, and T2 lesions was significantly decreased after treatment with PEGNLPUOs.


Subject(s)
Inflammation/drug therapy , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Nanoparticle Drug Delivery System/therapeutic use , Pistacia , Plant Oils/administration & dosage , Adult , Double-Blind Method , Fats, Unsaturated/administration & dosage , Female , Humans , Inflammation/immunology , Inflammation/pathology , Liposomes , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/pathology
10.
J Nutr Biochem ; 101: 108920, 2022 03.
Article in English | MEDLINE | ID: mdl-34875388

ABSTRACT

Inflammation causes severe dysregulation of organ functions, via the development of oxidative stress and inflammation damage. Polyphenol compounds found in green tea (GTE), including the most important component epigallocatechin-3-gallate (EGCG), have a great therapeutic potential. Here, protective properties of GTE and EGCG against lipopolysaccharide (LPS)-induced inflammation are explored. To this end, the effects of GTE and EGCG were studied on LPS challenged macrophages. Mice received GTE (250 mg/kg/d/p.o) or EGCG (25 mg/kg/d/i.p.) for 7 d, before the inflammation shock was provoked with a single intraperitoneal injection of LPS. The frequencies of lymphocytes CD4+, CD8+, NK1-1+ and CD4+CD25highFOXP3+ (Treg), macrophages CD11b+F480+, monocytes CD11b+Ly6Clow/high, neutrophils CD11b+Ly6G+, MDSCs CD11b+Gr-1high, M2/N2-like phenotype CD206+ and M1-like phenotype CD86+ in spleen, bone marrow and peripheral blood were determined. In vitro studies revealed that GTE and EGCG significantly attenuated LPS-induced CD80 expression and increased the CD163 expression, showing a potential to reduce the macrophage inflammatory phenotype. In vivo, GTE and EGCG inhibited the inflammation, mainly by reducing M1-macrophages and increasing Treg cells in the bone marrow. In addition, GTE and EGCG increase M2-macrophages, N2-neutrophils and Tregs in the spleen and blood and block the migration of monocytes from the bone marrow to the peripheral blood. These findings indicate that EGCG and GTE prevent LPS-induced inflammatory damage contributing to restoring the immune system homeostasis.


Subject(s)
Catechin/analogs & derivatives , Inflammation/immunology , Inflammation/therapy , Lymphocytes/immunology , Macrophages/immunology , Tea , Animals , Catechin/pharmacology , Humans , Lipopolysaccharides/immunology , Macrophage Activation , Male , Mice , Mice, Inbred BALB C , Myeloid Cells/immunology , Protective Agents
11.
Fitoterapia ; 156: 105099, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34896483

ABSTRACT

The aim of this study is to investigate the potential preventive and therapeutic effects of nobiletin by evaluating the expression of cytokines associated with inflammatory reactions in an autoimmune encephalomyelitis mouse model. A total of 60 male C57BL/6 mice aged between 8 and 10 weeks were used. Mice were divided into six groups (n = 10 mice per group): control, EAE, low-prophylaxis, high-prophylaxis, low-treatment and high-treatment. Experimental autoimmune encephalomyelitis (EAE) was induced by myelin oligodendrocyte glycoprotein (MOG) and pertussis toxin. Nobiletin was administered in low (25 mg/kg) and high (50 mg/kg) doses, intraperitoneally. The prophylactic and therapeutic effects of nobiletin on brain tissue and spinal cord were evaluated by expression of interleukin-1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), interferon gamma (IFNγ), IL-6, IL-10 and transforming growth factor-beta (TGF-ß) using immunohistochemistry and real-time polymerase chain reaction (RT-PCR). Prophylactic and therapeutic use of nobiletin inhibited EAE-induced increase of TNF-α, IL-1ß and IL-6 activities to alleviate inflammatory response in brain and spinal cord. Moreover, nobiletin supplement dramatically increased the IL-10, TGF-ß and IFNγ expressions in prophylaxis and treatment groups compared with the EAE group in the brain and spinal cord. The results obtained from this study show that prophylactic and therapeutic nobiletin modulates expressions of proinflammatory and antiinflammatory cytokines in brain and spinal cord dose-dependent manner in EAE model. These data demonstrates that nobiletin has a potential to attenuate inflammation in EAE mouse model. These experimental findings need to be supported by clinical studies.


Subject(s)
Antioxidants/therapeutic use , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Flavones/therapeutic use , Multiple Sclerosis/drug therapy , Animals , Antioxidants/pharmacology , Brain/drug effects , Brain/immunology , Brain/pathology , Cytokines/drug effects , DNA, Complementary/biosynthesis , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Flavones/pharmacology , Immunohistochemistry , Inflammation/drug therapy , Inflammation/immunology , Inflammation/prevention & control , Male , Mice , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Multiple Sclerosis/prevention & control , RNA/genetics , RNA/isolation & purification , Real-Time Polymerase Chain Reaction , Spinal Cord/drug effects , Spinal Cord/immunology , Spinal Cord/pathology
12.
J Nutr Biochem ; 100: 108887, 2022 02.
Article in English | MEDLINE | ID: mdl-34655757

ABSTRACT

Phytonutrients such as cinnamaldehyde (CA) have been studied for their effects on metabolic diseases, but their influence on mucosal inflammation and immunity to enteric infection are not well documented. Here, we show that consumption of CA in mice significantly down-regulates transcriptional pathways connected to inflammation in the small intestine, and alters T-cell populations in mesenteric lymph nodes. During infection with the enteric helminth Heligomosomoides polygyrus, CA treatment attenuated infection-induced changes in biological pathways connected to cell cycle and mitotic activity, and tended to reduce worm burdens. Mechanistically, CA did not appear to exert activity through a prebiotic effect, as CA treatment did not significantly change the composition of the gut microbiota. Instead, in vitro experiments showed that CA directly induced xenobiotic metabolizing pathways in intestinal epithelial cells and suppressed endotoxin-induced inflammatory responses in macrophages. Collectively, our results show that CA down-regulates inflammatory pathways in the intestinal mucosa and can limit the pathological response to enteric infection. These properties appear to be largely independent of the gut microbiota, and instead connected to the ability of CA to induce antioxidant pathways in intestinal cells. Our results encourage further investigation into the use of CA and related phytonutrients as functional food components to promote intestinal health in humans and animals.


Subject(s)
Acrolein/analogs & derivatives , Dietary Supplements , Inflammation/immunology , Intestine, Small/metabolism , Phytochemicals/administration & dosage , Strongylida Infections/immunology , Acrolein/administration & dosage , Acrolein/pharmacology , Animals , Cells, Cultured , Female , Gastrointestinal Microbiome , Immunity, Mucosal , Inflammation/metabolism , Intestinal Mucosa/metabolism , Intestine, Small/immunology , Lymph Nodes/immunology , Macrophages/drug effects , Macrophages/immunology , Metabolic Networks and Pathways/drug effects , Mice , Mice, Inbred C57BL , Nematospiroides dubius , Phytochemicals/pharmacology , T-Lymphocytes/immunology , Transcription, Genetic , Transcriptome , Xenobiotics/metabolism
13.
Oxid Med Cell Longev ; 2021: 5048375, 2021.
Article in English | MEDLINE | ID: mdl-34938382

ABSTRACT

Mastitis is mainly induced by gram-negative bacterial infections, causing devastating economic losses to the global cattle industry. Both selenium (Se) and taurine (Tau) exhibit multiple biological effects, including reducing inflammation. However, no studies have reported the protective effect of the combined use of Se and Tau against mastitis, and the underlying mechanisms remain unclear. In this study, lipopolysaccharide (LPS), the vital virulence factor of gram-negative bacteria, was used to construct the in vivo and vitro mastitis models. The results of in vivo model showed that Se and Tau combination was more effective than either substance alone in reducing tissue hyperemia, edema, and neutrophil infiltration in the mammary acinar cavity, improving the blood-milk barrier in LPS-induced mice mastitis, and decreasing the expression of proinflammatory factors and the activity of MPO. Moreover, Se and Tau combination significantly increased the levels of LPS-induced reduction in PI3K/Akt/mTOR, but the expressions of TLRs and NLRP3 were not significantly changed in the mammary tissue. In the in vitro experiments, the effects of Se and Tau combination or alone on inflammatory factors, inflammatory mediators, MPO activity, and blood-milk barrier were consistent with those in vivo. The Se and Tau combination has also been found to increase the survival rate of BMECs compared with each substance alone via promoting cellular proliferation and inhibiting apoptosis. Also, it has been confirmed that this combination could restore the LPS-induced inhibition in the PI3K/Akt/mTOR signaling pathway. Inhibition of mTOR by Rapamycin counteracted the combined protection of SeMet and Tau against LPS-induced inflammatory damage, the inhibition of PI3K by LY294002 blocked the activation of mTOR, and the accumulation of ROS by the ROS agonist blocked the activation of PI3K. In conclusion, these findings suggested that Se and Tau combination was better than either substance alone in protecting LPS-induced mammary inflammatory lesions by upregulating the PI3K/Akt/mTOR signaling pathway.


Subject(s)
Gene Expression Regulation/drug effects , Inflammation/prevention & control , Mammary Glands, Animal/drug effects , Mastitis/prevention & control , Reactive Oxygen Species/metabolism , Selenium/pharmacology , Taurine/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Cattle , Drug Therapy, Combination , Female , Free Radical Scavengers , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Lipopolysaccharides/toxicity , Mammary Glands, Animal/immunology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mastitis/chemically induced , Mastitis/immunology , Mastitis/metabolism , Mice , Mice, Inbred ICR , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
14.
Nutrients ; 13(12)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34959851

ABSTRACT

This article focuses on how nutrition may help prevent and/or assist with recovery from the harmful effects of strenuous acute exercise and physical training (decreased immunity, organ injury, inflammation, oxidative stress, and fatigue), with a focus on nutritional supplements. First, the effects of ketogenic diets on metabolism and inflammation are considered. Second, the effects of various supplements on immune function are discussed, including antioxidant defense modulators (vitamin C, sulforaphane, taheebo), and inflammation reducers (colostrum and hyperimmunized milk). Third, how 3-hydroxy-3-methyl butyrate monohydrate (HMB) may offset muscle damage is reviewed. Fourth and finally, the relationship between exercise, nutrition and COVID-19 infection is briefly mentioned. While additional verification of the safety and efficacy of these supplements is still necessary, current evidence suggests that these supplements have potential applications for health promotion and disease prevention among athletes and more diverse populations.


Subject(s)
Antioxidants/therapeutic use , Athletes , Dietary Supplements , Exercise/immunology , Oxidative Stress , Physical Endurance , COVID-19/epidemiology , COVID-19/immunology , Humans , Inflammation/epidemiology , Inflammation/immunology , Oxidative Stress/drug effects , Oxidative Stress/immunology , Physical Endurance/drug effects , Physical Endurance/immunology , SARS-CoV-2/immunology , Sports Nutritional Sciences
15.
Oxid Med Cell Longev ; 2021: 8031319, 2021.
Article in English | MEDLINE | ID: mdl-34917234

ABSTRACT

Hyperuricemia (HUA) is a metabolic disease, closely related to oxidative stress and inflammatory responses, caused by reduced excretion or increased production of uric acid. However, the existing therapeutic drugs have many side effects. It is imperative to find a drug or an alternative medicine to effectively control HUA. It was reported that Gardenia jasminoides and Poria cocos could reduce the level of uric acid in hyperuricemic rats through the inhibition of xanthine oxidase (XOD) activity. But there were few studies on its mechanism. Therefore, the effective ingredients in G. jasminoides and P. cocoa extracts (GPE), the active target sites, and the further potential mechanisms were studied by LC-/MS/MS, molecular docking, and network pharmacology, combined with the validation of animal experiments. These results proved that GPE could significantly improve HUA induced by potassium oxazine with the characteristics of multicomponent, multitarget, and multichannel overall regulation. In general, GPE could reduce the level of uric acid and alleviate liver and kidney injury caused by inflammatory response and oxidative stress. The mechanism might be related to the TNF-α and IL-7 signaling pathway.


Subject(s)
Gardenia/chemistry , Hyperuricemia/drug therapy , Inflammation/drug therapy , Network Pharmacology/methods , Oxidative Stress , Plant Extracts/pharmacology , Wolfiporia/chemistry , Animals , Hyperuricemia/immunology , Hyperuricemia/pathology , Inflammation/immunology , Inflammation/pathology , Kidney/drug effects , Kidney/injuries , Liver/drug effects , Liver/injuries , Male , Molecular Docking Simulation , Rats , Rats, Sprague-Dawley , Uric Acid/metabolism
16.
Food Funct ; 12(24): 12800-12811, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34859812

ABSTRACT

Dendritic cells (DCs) represent a heterogeneous family of immune cells that link innate and adaptive immunity and their activation is linked to metabolic changes that are essential to support their activity and function. Hence, targeting the metabolism of DCs represents an opportunity to modify the inflammatory and immune response. Among the natural matrices, Humulus lupulus (Hop) compounds have recently been shown to exhibit immunomodulatory and anti-inflammatory activity. This study aimed to evaluate the ability of specific Hop fractions to modulate DCs metabolism after stimulation with lipopolysaccharide (LPS) by an untargeted metabolomics approach and compare their effect with flavonol quercetin. Following liquid chromatography-based fractionation, three fractions (A, B, and C) were obtained and tested. Cytokine and gene expression were evaluated using ELISA and qPCR, respectively, while the untargeted metabolomics analysis was performed using a combined HILIC-HRMS and DI-FT-ICR approach. The HOP C fraction and quercetin could both reduce the production of several inflammatory cytokines such as IL-6, IL-1α, IL-1ß, and TNF, but differently from quercetin, the HOP C mechanism is independent of extracellular iron-sequestration and showed significant upregulation of the Nrf2/Nqo1 pathway and Ap-1 compared to quercetin. The untargeted analysis revealed the modulation of several key pathways linked to pro-inflammatory and glycolytic phenotypes. In particular, HOP C treatment could modulate the oxidative step of the pentose phosphate pathway (PPP) and reduce the inflammatory mediator succinate, citrulline, and purine-pyrimidine metabolism, differently from quercetin. These results highlight the potential anti-inflammatory mechanism of specific Hop-derived compounds in restoring the dysregulated metabolism in DCs, which can be used in preventive or adjuvant therapies to suppress the undesirable inflammatory response.


Subject(s)
Citrulline/metabolism , Dendritic Cells/metabolism , Humulus/metabolism , Inflammation/metabolism , Pyrimidines/metabolism , Quercetin/metabolism , Succinic Acid/metabolism , Animals , Anti-Inflammatory Agents/immunology , Anti-Inflammatory Agents/metabolism , Bone Marrow/immunology , Bone Marrow/metabolism , Citrulline/immunology , Dendritic Cells/immunology , Disease Models, Animal , Flavonoids , Humulus/immunology , Inflammation/immunology , Mass Spectrometry/methods , Metabolomics/methods , Mice , Mice, Inbred C57BL , Plant Extracts/immunology , Plant Extracts/metabolism , Purines , Pyrimidines/immunology , Quercetin/immunology , Succinic Acid/immunology
17.
Nutrients ; 13(11)2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34835994

ABSTRACT

Lingonberry (Vaccinium vitis ideae L.) is a low-bush wild plant found in the northern hemisphere. The berries are used in traditional medicine in Finland to treat oral yeast infections. General and oral effects of lingonberries on the microbiome and inflammation are reviewed. A brief introduction to oral microbiome symbiosis and dysbiosis, innate and adaptive immunity and inflammation are included, and special features in microbe/host interactions in the oral environment are considered. In vitro anticancer, antimicrobial, antioxidant, anti-inflammatory, and in vivo mouse and human studies are included, focusing on the symbiotic effect of lingonberries on oral and general health.


Subject(s)
Fruit/chemistry , Inflammation/pathology , Microbiota , Vaccinium vitis-idaea/chemistry , Administration, Oral , Animals , Dysbiosis/microbiology , Humans , Inflammation/immunology
18.
Front Immunol ; 12: 778830, 2021.
Article in English | MEDLINE | ID: mdl-34777396

ABSTRACT

Pathogenic inflammation and immuno-suppression are cardinal features of exhausted monocytes increasingly recognized in septic patients and murine models of sepsis. However, underlying mechanisms responsible for the generation of exhausted monocytes have not been addressed. In this report, we examined the generation of exhausted primary murine monocytes through prolonged and repetitive challenges with high dose bacterial endotoxin lipopolysaccharide (LPS). We demonstrated that repetitive LPS challenges skew monocytes into the classically exhausted Ly6Chi population, and deplete the homeostatic non-classical Ly6Clo population, reminiscent of monocyte exhaustion in septic patients. scRNAseq analyses confirmed the expansion of Ly6Chi monocyte cluster, with elevation of pathogenic inflammatory genes previously observed in human septic patients. Furthermore, we identified CD38 as an inflammatory mediator of exhausted monocytes, associated with a drastic depletion of cellular NAD+; elevation of ROS; and compromise of mitochondria respiration, representative of septic monocytes. Mechanistically, we revealed that STAT1 is robustly elevated and sustained in LPS-exhausted monocytes, dependent upon the TRAM adaptor of the TLR4 pathway. TRAM deficient monocytes are largely resistant to LPS-mediated exhaustion, and retain the non-classical homeostatic features. Together, our current study addresses an important yet less-examined area of monocyte exhaustion, by providing phenotypic and mechanistic insights regarding the generation of exhausted monocytes.


Subject(s)
Immunologic Memory , Inflammation/immunology , Monocytes/immunology , Sepsis/immunology , ADP-ribosyl Cyclase 1/genetics , ADP-ribosyl Cyclase 1/metabolism , Animals , Antigens, Ly/genetics , Antigens, Ly/metabolism , B7-2 Antigen/genetics , B7-2 Antigen/metabolism , Cells, Cultured , Immunologic Memory/drug effects , Inflammation/genetics , Inflammation/metabolism , Kruppel-Like Factor 4/metabolism , Lipopolysaccharides/pharmacology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Monocytes/drug effects , Monocytes/metabolism , Phenotype , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , STAT1 Transcription Factor/metabolism , Sepsis/genetics , Sepsis/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism
19.
Elife ; 102021 10 05.
Article in English | MEDLINE | ID: mdl-34609282

ABSTRACT

Expansion of biliary epithelial cells (BECs) during ductular reaction (DR) is observed in liver diseases including cystic fibrosis (CF), and associated with inflammation and fibrosis, albeit without complete understanding of underlying mechanism. Using two different genetic mouse knockouts of ß-catenin, one with ß-catenin loss is hepatocytes and BECs (KO1), and another with loss in only hepatocytes (KO2), we demonstrate disparate long-term repair after an initial injury by 2-week choline-deficient ethionine-supplemented diet. KO2 show gradual liver repopulation with BEC-derived ß-catenin-positive hepatocytes and resolution of injury. KO1 showed persistent loss of ß-catenin, NF-κB activation in BECs, progressive DR and fibrosis, reminiscent of CF histology. We identify interactions of ß-catenin, NFκB, and CF transmembranous conductance regulator (CFTR) in BECs. Loss of CFTR or ß-catenin led to NF-κB activation, DR, and inflammation. Thus, we report a novel ß-catenin-NFκB-CFTR interactome in BECs, and its disruption may contribute to hepatic pathology of CF.


The liver has an incredible capacity to repair itself or 'regenerate' ­ that is, it has the ability to replace damaged tissue with new tissue. In order to do this, the organ relies on hepatocytes (the cells that form the liver) and bile duct cells (the cells that form the biliary ducts) dividing and transforming into each other to repair and replace damaged tissue, in case the insult is dire. During long-lasting or chronic liver injury, bile duct cells undergo a process called 'ductular reaction', which causes the cells to multiply and produce proteins that stimulate inflammation, and can lead to liver scarring (fibrosis). Ductular reaction is a hallmark of severe liver disease, and different diseases exhibit ductular reactions with distinct features. For example, in cystic fibrosis, a unique type of ductular reaction occurs at late stages, accompanied by both inflammation and fibrosis. Despite the role that ductular reaction plays in liver disease, it is not well understood how it works at the molecular level. Hu et al. set out to investigate how a protein called ß-catenin ­ which can cause many types of cells to proliferate ­ is involved in ductular reaction. They used three types of mice for their experiments: wild-type mice, which were not genetically modified; and two strains of genetically modified mice. One of these mutant mice did not produce ß-catenin in biliary duct cells, while the other lacked ß-catenin both in biliary duct cells and in hepatocytes. After a short liver injury ­ which Hu et al. caused by feeding the mice a specific diet ­ the wild-type mice were able to regenerate and repair the liver without exhibiting any ductular reaction. The mutant mice that lacked ß-catenin in hepatocytes showed a temporary ductular reaction, and ultimately repaired their livers by turning bile duct cells into hepatocytes. On the other hand, the mutant mice lacking ß-catenin in both hepatocytes and bile duct cells displayed sustained ductular reactions, inflammation and fibrosis, which looked like that seen in patients with liver disease associated to cystic fibrosis. Further probing showed that ß-catenin interacts with a protein called CTFR, which is involved in cystic fibrosis. When bile duct cells lack either of these proteins, another protein called NF-B gets activated, which causes the ductular reaction, leading to inflammation and fibrosis. The findings of Hu et al. shed light on the role of ß-catenin in ductular reaction. Further, the results show a previously unknown interaction between ß-catenin, CTFR and NF-B, which could lead to better treatments for cystic fibrosis in the future.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Fibrosis/genetics , Inflammation/genetics , NF-kappa B/genetics , beta Catenin/genetics , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Fibrosis/immunology , Inflammation/immunology , Mice , Mice, Transgenic , NF-kappa B/metabolism , beta Catenin/metabolism
20.
Biomed Pharmacother ; 144: 112345, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34678721

ABSTRACT

Potentilla discolor Bunge (PD) is a traditional Chinese medicine which has been widely used for the treatment of various inflammatory diseases (e.g., diarrhea, fever and furuncle). However, few studies focused on its effect on classical inflammation. This study aimed to investigate the anti-inflammatory effect and potential mechanism of the ethanol extract of the whole herbs of PD (EPD) in lipopolysaccharide (LPS)-induced inflammatory models. The obtained results showed that EPD decreased supernatant NO, tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) in LPS-activated RAW264.7 cells and mouse peritoneal macrophages. Moreover, its effect on NO was attributed to the suppression of iNOS expression rather than its activity. At the transcriptional level, EPD suppressed iNOS, TNF-α and MCP-1 mRNA expressions in LPS-stimulated RAW264.7 cells. Further study showed that EPD didn't affect the phosphorylation and degradation of IκBα, but yet impeded the nuclear translocation of p65 to inhibit NF-κB activation. Meanwhile, it also prevented JNK, ERK1/2 and p38 phosphorylation to dampen the activation of AP-1. In endotoxemia mouse model, EPD not only decreased interleukin-6, TNF-α and MCP-1 levels in serum, but also potently ameliorated diarrhea. These findings provide the theoretical basis for PD to treat inflammatory diseases, especially intestinal inflammation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Endotoxemia/prevention & control , Inflammation/prevention & control , Macrophages/drug effects , NF-kappa B/metabolism , Plant Extracts/pharmacology , Potentilla , Transcription Factor AP-1/metabolism , Animals , Anti-Inflammatory Agents/isolation & purification , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Diarrhea/chemically induced , Diarrhea/immunology , Diarrhea/metabolism , Diarrhea/prevention & control , Disease Models, Animal , Endotoxemia/chemically induced , Endotoxemia/immunology , Endotoxemia/metabolism , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Lipopolysaccharides , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred ICR , NF-KappaB Inhibitor alpha/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Phosphorylation , Plant Extracts/isolation & purification , Potentilla/chemistry , RAW 264.7 Cells , Signal Transduction , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL